Negative values of truncations to L ( 1 , χ )
نویسندگان
چکیده
∑ n≤x λ(n) is non-positive for all x ≥ 2, which also implies the Riemann Hypothesis). In [4] Haselgrove showed that both the Turán and Pólya conjectures are false; therefore we know that truncations to L(1, χ) may get negative. Let F denote the set of all completely multiplicative functions f(·) with −1 ≤ f(n) ≤ 1 for all positive integers n, let F1 be those for which each f(n) = ±1, and F0 be those for which each f(n) = 0 or ±1. Given any x and any f ∈ F0 we may find a primitive quadratic character χ with χ(n) = f(n) for all n ≤ x (again, by using quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progressions) so that, for any x ≥ 1,
منابع مشابه
EXTREME VALUES OF arg L ( 1 , χ )
Values of Dirichlet L-functions at s = 1 have always attracted great attention due to their central role in number theory. In particular the prime number theorem for arithmetic progressions relies on the non-vanishing of L(1, χ) for any non-principal character χ (mod q). Moreover improving the existing lower bounds for |L(1, χ)| (the famous Siegel’s bound |L(1, χ)| ≫ǫ q) would imply many import...
متن کاملThe Critical Values of Certain Dirichlet Series
We investigate the values of several types of Dirichlet series D(s) for certain integer values of s, and give explicit formulas for the value D(s) in many cases. The easiest types of D are Dirichlet L-functions and their variations; a somewhat more complex case involves elliptic functions. There is one new type that includes ∑∞ n=1(n +1) for which such values have not been studied previously. 2...
متن کاملTranscendental Values of Class Group L-functions, Ii M. Ram Murty and v. Kumar Murty
Let K be an imaginary quadratic field and f an integral ideal. Denote by Cl(f) the ray class group of f. For every non-trivial character χ of Cl(f), we show that L(1, χ)/π is transcendental. If f = f, then complex conjugation acts on the character group of Cl(f). Denoting by Ĉl(f) + the orbits of the group of characters, we show that the values L(1, χ) as χ ranges over elements of Ĉl(f) + are l...
متن کاملN ov 2 00 1 Spacing of Zeros of Hecke L - Functions and the Class Number Problem
Contents: 1. A bit of history and results 2. Basic automorphic forms 3. Summation formulas 4. Convolution sums 5. Point to integral mean-values of Dirichlet's series 6. Evaluation of A(T) 7. Approximate functional equation 8. Evaluation of ℓ(s) on average 9. Estimation of x(s) on average 10. Applications The group of ideal classes Cℓ(K) of an imaginary quadratic field K = Q(√ −q) is the most fa...
متن کاملRIEMANN’S FIRST PROOF OF THE ANALYTIC CONTINUATION OF ζ(s) AND L(s, χ)
In this chapter, we will see a proof of the analytic continuation of the Riemann zeta function ζ(s) and the Dirichlet L function L(s, χ) via the Hurwitz zeta function. This then gives rise to a functional equation for ζ(s) and a direct computation for the value of this function at negative integer points. 1. The Hurwitz zeta function We have already seen the definition of the Riemann zeta funct...
متن کامل